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The Rayleigh theory of oscillation of liquid drops is extended to  include the effects of 
viscosity and a uniform external electric field. The resonant frequencies of the modes 
of the drop are shown to be shifted by the electric field. The magnitude and sign of the 
frequency shift depends on the dielectric constant of the drop. The condition for 
instability of drops in large electric fields is given and found to differ from that given 
by previous workers. This difference is attributed to the assumption by previous 
workers that the drops, under the influence of an electric field, distort into ellipsoids 
of revolution about the field direction. The dynamical equations are derived and the 
solution for small oscillations is given in an oscillating field and in an amplitude- 
modulated optical field. 

1. Introduction 
The first work on the dynamical theory of the oscillation of liquid drops appears to 

have been done by Lord Rayleigh (1879). I n  his investigation, Rayleigh considered 
small distortions of drops from equilibrium under t.he action of forces due to  surface 
tension alone. Later, Lamb (1932) included the effects of damping of the small 
oscillations by internal viscous forces and showed that the rate of damping was 
dependent on the size of the drops, becoming extremely large for very small drops. 
The possibility of instability of the lower modes of oscillation was first investigated 
by Rayleigh (1882), who showed that the square of the resonant frequency of the 
nth mode of a charged drop is 

where p is the density of the liquid drop, a is the equilibrium radius, y is the surface 
tension, and Q is the total charge on the drop. According to Rayleigh, instability 
occurs when wft < 0, or, when ) & I  > [4na3y(n + 2)]*, the nth mode is unstable. The 
lower modes become unstable for the least amount of charge. The condition for 
instability is sometimes written in terms of the electric field at the surface of the drop, 
E = Q/a2, so that the condition expressed above is frequently given as 
1 El > (4472 + 2) y / a ) i  and has been used as a starting point by later investigators. 

Considerably later than the above work, an investigation of the dynamics of small 
drops was begun by Thacher (1952) and O'Konski & Thacher (1953). They con- 
sidered the distortion of drops by an electric field, assuming that the distorted drop 
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shape was an ellipsoid of revolution about the direction of the electric field. They also 
discussed the possibility of enhancing the distortion of the drop by applying an 
alternating electric field but failed to observe that the frequency of the electric field 
should be half the natural resonant frequency of the drop. O’Konski & Harris (1957) 
extended this work to include in the analysis the effect of electrical conductivity of 
both the drop and the surrounding medium. No consideration was given to the 
possible effect of conductivity on the damping. In  their analysis, they found the 
rather surprising result that, under certain appropriate choices of conductivities, the 
drop remained spherical in an applied field. As in their previous investigation, 
O’Konski & Harris assumed that the droplet, under the action of an electric field, 
becomes an ellipsoid of revolution about the field direction. 

Later, Garton & Krasucki (1964) investigated the stability of bubbles in a static 
electric field and questioned the correctness of previous theoretical work on electro- 
striction. They showed actual photographs of bubbles in various stages of disinte- 
gration that vividly displayed the physical nature of bubbles breaking. 

In  a series of papers, Taylor (1964) discussed the stability of conducting drops in an 
electric field. He showed that it is necessary to introduce motion of the fluid inside a 
drop to attain the spherical (undistorted) solution of O’Konski & Harris (1957). 
Some experimental work is reported in Taylor’s (1964, 1966) papers, and the results 
agree quite well with the theory. Sozou (1972) later extended Taylor’s theory to 
include time-dependent electric fields. He gave a number of results in the form of 
equations with a few cases of numerical results, but further work seems necessary for 
comparison with experiment and with previous results. 

Rosenkilde (1969) investigated the stability of drops in an electric field using 
methods of tensor calculus and Chandrasekhar’s (1961) virial method. He showed 
that, under appropriate conditions, at  least three different configurations can exist. 
He predicted that a drop could become unstable only if its dielectric constant was 
greater than 20.801. 

Most of the above work is devoted to the development of the theory of equilibrium 
distortion of drops under the action of various forces. None of these workers attempted 
to develop their results using the original techniques introduced by Rayleigh (1879). 
In fact, the technique used by Rayleigh (1882) in his discussion of a charged drop was 
somewhat different from that used in his first paper. A detailed derivation of Ray- 
leigh’s result for a charged drop has been given by Hendricks & Schneider (1963) and 
later by Schneider (1964)’ along with many applications of the results. Dissipation 
by viscosity was not considered in either of these investigations. 

In  this work, we use the methods of Rayleigh’s first paper. In 3 2, we find the energy 
due to  surface tension, the kinetic energy of the fluid of the drop, and the Rayleigh 
dissipation function in terms of a set of generalized co-ordinates describing the 
distortion of the drop. From these quantities, the Lagrangian (as given by Rayleigh) 
is calculated and the generalized equations of motion are derived, including the 
dissipation terms. Lamb’s result for the decay of oscillating drops is derived from 
these equations. In 3 3, we include in the Lagrangian the terms involving the energy 
due to an external uniform electric field. We discuss this aspect in considerable detail 
because we have not been able to find any reference to an extension of Rayleigh’s 
result that includes an external field. Section 4 is devoted to a discussion of the results 
of the previous sections. The results are used to investigate the stability of drops under 
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the action of a static external field as well as the dynamical behaviour of drops under 
the action of a time-varying field. 

2. Equations of motion for free oscillating drops 
I n  the dynamical theory of the oscillation of a liquid drop, we assume that the 

distance, r ,  from the centre of mass of the drop to  a point on its surface can be expanded 
in a series of Legendre polynomials, P,(cos d ) ,  as 

The method of solving a given problem is to express the Lagrangian for that problem 
in terms of the variables an(t) and to treat these a,(t) as generalized co-ordinates to  
obtain the equations of motion. The set of functions P, is complete if we assume that 
the shape of the drop is symmetric about the z axis. At this point, the z axis can be 
chosen arbitrarily; later, when we include the electromagnetic energy, the electric 
field will be assumed to be along this axis. We shall assume symmetry about the 
z axis throughout the discussion. The prime on the sum in (2.1) indicates that  the 
n = 0 term is omitted from the sum. 

With the assumption of incompressibility, the constancy of the volume of the drop 
is a constraint on the a,(t) in (2.1). If a is the radius of the equilibrium sphere, this 
assumption leads to 

( 2 . 2 )  

which holds through order a:L with n 3 l o  Since we are interested only in terms of 
second order in alL, we treat ( 2 . 2 )  and subsequent results as equalities. 

The potential energy, q,, of the drop due to surface tension, y ,  is the surface area 
of the drop multiplied by y ,  or 

where the constraint given in (2.2) has been used to obtain this result. 
To calculate the kinetic energy, T, we need to evaluate the volume integral 

T = $ J p V 2 d T ,  (2.4) 

where p is the density (uniform) and v is the velocity of the fluid. We assume that the 
fluid is incompressible and that there are no sources or sinks; under these assumptions, 
we obtain 

This result is valid through terms of order at .  If higher-order terms are retained in 
the derivation of ( 2 . 5 ) ,  these terms give corrections of the form u:Lak, thereby coupling 
the equations of motion of the a, in a complicated manner, which we ignore in the 
present investigation. However, any serious investigation of dynamic instability 
should include these terms because they are of third order in the a, and can be im- 
portant in this and other terms. 

To derive the effect of viscosity on the equations of motion, we use Rayleigh's 
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Radius v 2  7 2  v4 7 4  V 8  7 6  

(P) (Hz) (s) (Hz) (8) (Hz) ( 5 )  

1 3.75(6)7 2.26( - 7) 1.08(7) 4.1!)( - 8) 1.88(7) 1.74( - 8) 
10 1.21(5) 2.26( - 5) 3.60(5) 4.1!)( - 6) 6.55(5) 1.74( - 6) 

100 3.82(3) 2'26( - 3) 1.15(4) 4.1!)( - 4) 2'09(4) 1.74( - 4) 
1000 1.21(2) 2.26( - 1) 3.62(2) 4.1!$( - 2) 6'61(2) 1.74( - 2) 

t The numbers in parentheses give the power of ten. 

TABLE 1.  Resonant frequencies, v, = w,/2n, and decay times, 7,, for drops 
of various sizes oscillating on the first few modes. 

diaaipation function, R, as discussed by Goldstein (1950) ,  instead of the procedure 
used by Lamb (1932).  As will become apparent in the development, this method is 
much more compatible with the treatment presented here. A convenient form of the 
dissipation function given by Landau & Lifshitz (1959) is 

R = $7 1 (grad v2). d o ,  

where 7 is the viscosity. As in calculating the kinetic energy, it is sufficient to assume 
that do is along r. We obtain 

(n -  1)a: 
R = 4 n y a x '  

n n  

The equation of motion for a,(t) can now be readily found by forming the Lagrangian 
(L ,  = T - U,) and using Lagrange's equation 

together with (2 .3) ,  (2.5) and (2 .7 ) ,  to  give 

Thus, if the viscosity vanishes, we have Rayleigh's ( 1  879) result 

w:(y = 0) = - n ( n - - l ) ( n + 2 ) .  Y (2.10) 
Pa3 

If the viscosity is small enough, we obtain Lamb's (1932) result for the decay time of 
the nth mode 

Pa2 
~ ( n -  1) ( 2 n +  1 ) '  

7, = 

The presence of viscosity shifts the resonant frequency so that 

(2.11) 

w; = o;(y = 0) - (I/rn)Z, (2.12) 

for w i  2 0, otherwise, the drop does not oscillate. For the modes n = 2,  4, and 6 ,  the 
frequency v, = w J 2 n  and the decay time r, were calculated for drops of radius 
a = 1,  10, 100, and 1OOOpm, where we have used y = 72.0 dynes em-l and 
7 = 0.884 x 10-2  P. The results of the calculation are given in table 1.  

The above results have been previously derived by various techniques, and we 
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have shown that they can be obtained by methods compatible with Rayleigh's 
original approach to the problem. Also, as we have shown, our method of obtaining 
the corrections to Rayleigh's results due to the viscosity are more transparent in this 
approach. 

3. Effect of uniform external electric field 
The inclusion of a uniform electric field into the analysis presents a problem of 

considerable complexity. Therefore, we present the approach and the solution to the 
problem in more detail than in our previous discussion. To be consistent with the 
preceding analysis, we need to obtain an expression for the electromagnetic energy of 
the drop, expressed in terms of the a,(t) as given in (2.1). This energy is then added 
t o  the existing Lagrangian, which can then be used to obtain the equations of motion 
for the problem. 

A convenient form for the electromagnetic energy stored in the drop is given by 
Jackson (1975):t 

where Ei is the electric field inside the drop, E is the field in the absence of the drop, 
and the integral is over the volume of the drop. I n  (3.1), the dielectric constant of 
the drop, E ,  is assumed to be independent of electric field and pressure. Thus, our 
problem is to find a solution for Ei before proceeding further. 

For a dielectric body, we have from Maxwell's equations (assuming that the fields 
are slowly varying) 

where 
The electric fields are given by 

divgrad I+P = 0, divgrad $' = 0, (3.2) 

and are the electric potentials outside and inside the drop, respectively. 

Eo = -grad$", Ei = -grad$', (3.3) 

where Eo and Ei are the electric fields outside and inside the drop. The appropriate 
solutions to (3.2) for our problem can be written 

(3.4) 
" A  I+P = 2 R P,,(cos 8) - Er cos 8, 

n=n rn+l 
for the exterior region and 

m 

? L = O  
@ = C r"B,P,(cosU), ( 3 . 5 )  

for the interior region of the drop. The last term in (3.4) represents the potential of 
the uniform external field. 

Before evaluating the coefficients A,  and B, in the potential, we shall use (3.5) and 
(3.3) in (3 .1)  to obtain an expression for L& in terms of the B,. This procedure allows 
us to determine by inspection which terms must be retained in the solution of the 
boundary-value problem so that U, is correct through order a:,. 

The applied electric field can be written as 

E = E(PcosW-BsinH), (3 .6)  

t The tlc,r.~\  ntlorl o f  ( 3  1 )  I <  I l o t  t t l x l n l  mrtl ,Tajt*l,w)u pl\t.\ ( ' o 1 1 + 1 d e ~ r ~ ~ I ) l ( ~  i l t t (%l i t lot l  t o  It 
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where P and 8 are unit vectors in their respective directions. From ( 3 . 3 )  and ( 3 . 5 ) ,  we 
obtain 

00 

E. E' = - E C nB,rn-lP,-,(cos 8 ) ,  
n=l 

( 3 . 7 )  

where we have used a recursion formula for the P,. Substituting ( 3 . 7 )  into ( 3 . 1 ) ,  we 
have 

where we have separated the term n = 1 from the remainder since this term is the 
integral over 8 of r3,  which is proportional to the volume and is contained in the con- 
straining equation, ( 2 . 2 ) .  

To evaluate the terms in ( 3 . 8 ) ,  we use ( 2 . 1 )  and expand the powers of a, through 
linear terms in a,, or 

for n > 1 .  The result ( 3 . 9 )  can be used in (3 .8)  to give 

(3 .10)  

We have replaced the product U , U ~ + ~  by U , U ~ + ~ ,  since the corrections to  a, are of 
order a: and corrections to (3 .10 )  would be of order a l ,  which are neglected. Also, we 
have only expanded r through linear terms in a,, because the B, in (3 .10 )  for n > 1 
vanish for undistorted spherical drops. Therefore, to  obtain an expression for the 
energy that is valid to order a:L, it is necessary to obtain B, to order a: and B, for 
n > 1 to order a,. To proceed, we have to return to the problem of evaluating the A ,  
and B, of ( 3 . 4 )  and ( 3 . 5 ) .  

To evaluate A, and B,, we apply the boundary conditions on the fields a t  the surface 
of the drop. These are that the tangential components of the electric field are con- 
tinuous, Ei = E:, and that the normal components of the electric displacement are 
continuous, D\ = D;, where the subscripts 11 and i on the vectors denote tangential 
and normal components, respectively. The continuity of the tangential electric field 
can be easily shown to be equivalent to the continuity of the potential, so that 

= $" at the surface. The boundary condition on the normal component of D, 
however, requires some consideration. Since D' = eE' and Do = E", we have 

efi. grad @ = ii .grad p, (3 .11)  

at  the surface of the drop, where fi is a unit vector normal to the surface and where 
we have used ( 3 . 3 ) .  To construct A, we note that the vector d s  = @dr+B"rdO lies in 
the surface if r and 8 are related by ( 2 . 1 ) .  The unit vector C$ in the 4 direction also 
lies in the surface, since the drop is symmetrical about the x axis. A vector normal to  
the surface can be formed by the cross product of these two vectors, or 

(3 .12)  
L1 dsxC$ - - F - 6 r - l d r / d 6  
n =  

Ids x $ 1  [ 1 +  ( r -1dr /d6 )2 ] t '  
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which can be used in (3.11) to obtain the normal derivative. Thus, to reiterate, the 
boundary conditions are 

(3.13) 

evaluated a t  the boundary with r given by ( 2 . 1 ) .  
To keep track of the order of the corrections, it is convenient to rewrite ( 2 . 1 )  as 

r = ao+6C'a,P,, 
n 

and expand the various powers of r in powers of 6; we also expand 

A, = A t )  + 6A;;) + 82A(If) + . . ., 
B ,  = Bg) + SB:) + PBf )  + . . . , 

(3.14) 

(3.15) 

Then, in the final result, we let 6 = 1, since it serves only as an artifice to keep the 
terms in order. We substitute (3.15) into (3.4) and (3.5) and insert these into (3.13) and 
equate the coefficients of 6" on both sides to obtain 

9 % * I ,  'I A t )  = B(O) = 0 

(3.16) 

where 

(3.17) 
m ( m - 1 ) ( 2 m - l ) ( e + 2 )  

m{e(m- 1) [12m3+ 1 0 ~ 2 -  12m- il-m[12m3+2m2- i s m +  101) 
(2m+ 1)2(2m- 1 )  (2m+ 3) [.(m- 1 )  +m] 

G ,  = 
(2m - 3 )  (2m + 1)  [ ~ ( m  - 1 )  + m]' 

and 

H, = . (3.18) 

When the results given in (3.16) are substituted into (3.10), we get 

To form the full Lagrangian for the problem, we need only add U, to Us, so tha t  
L = T - U, - U,; the equation of motion for a, is then given by 
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where Sij is the Kronecker delta and G, and H, are defined by (3.17) and (3.18). The 
right-hand side of (3.20) is new. 

Several aspects of (3.20) are as should be expected from the general symmetry of 
the problem. That is, the right hand side is dependent on the square of the electric 
field, so that a reversal of the field does not alter the results. Further, the n = 2 mode 
is the only mode driven directly by the electric field, and this mode couples to the 
n = 4 mode and subsequently to higher modes with n even. Therefore, if no further 
perturbations couple the odd and even modes, only those modes for n even need to 
be considered. Some of these results would have been immediately obvious if we had 
used Maxwell’s stress tensor to evaluate the forces on the drop, but then the normal 
mode result; of (3.20) would have been lost. If we ignore the coupling to the higher 
modes in (3.20)) the resonant frequency of the nth mode is given by 

(3.21) 

where 7, is defined by (2.1 I ) .  This result is similar in appearance to that derived by 
Rayleigh (1882) for a charged drop (as stated in ( l . l ) ) ,  with Q = Ea2. In Rayleigh’s 
result, the frequency decreases as the field (charge) increases; in (3.21),  this condition 
occurs only when H, > 0. This is true if B > 1.405 with n = 2, B > 1-119 with n = 4,  
B > 1.070 with n = 6 ,  and B > 1 for n = 00. Perhaps a fair comparison with Rayleigh’s 
result is for a conducting drop, for which the resonant frequency can be obtained 
from (3.21) by letting the dielectric constant become infinite, or 

- (k)’. (3.22) 

This result shows the same behaviour as that of Rayleigh, but with a more com- 
plicated dependence on the mode number, n. 

4. Applications of the Rayleigh formalism 
‘The result given in (3.20) is a t  this point general in that no assumptions have been 

made concerning the nature of the electric field other than that the external field is 
uniform and that it can be derived from a scalar potential. I n  this section, we discuss 
the results obtained from (3.20) for three different types of fields; a static electric 
field, an alternating electric field, and an amplitude modulated high frequency field. 

(a )  Static electricJield 
I n  the case of a charged drop under the influence of its self-electric field (Rayleigh’s 
1882 result), the modes of oscillation are uncoupled, so that a simple criterion, 
w, = 0, can be taken as the onset of instability. In  the present case given in (3.20), we 
see that the modes are coupled, so that the condition for instability created by a large 
electric field becomes complicated. If we assume that 6, and a, in (3.20) vanish, then 
we can write 

D n x n  = ihYJn,2+ 3hy[G,+2xn+2+G,x,-21, (4.1) 
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7009 
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90.16 
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6109 
728.2 
280.4 

83.71 
12.42 
6.367 
3.556 
3.364 
3.302 
3.044 

YS 

6054 
720.5 
278.2 

82.80 
12.40 
6.362 
3.555 
3.363 
3.291 
3.044 

TABLE 2. Exact solutions, y,, and approximate solutions, y Z ~ ,  of A(y) = 0, y = E2a/y .  

where D, = A,-  6hyH,, x, = a,/a, y = E2a/y, h = (e- 1)2/(e+ 2)2, and A ,  = 

4-/r(n-I)(n+2)/(2n+l) ,  where H, and 0, are given in (3.17) and (3.18). For low 
fields (y N 0) ,  the coupling between modes can generally be ignored; for larger fields, 
on the other hand (which would be required for the drop to become unstable), the 
coupling cannot be ignored. Thus, to investigate the instability of the system of 
equations in (4.1), it is necessary to consider the coupled equations in detail. 

If we write (4.1) in matrix notation, then 

TX = F, (4.2) 

where Tn3, = D,S,, - 3hG,Sn,, 1L+2 - 3hGn6,,, n-2, and x and F are column matrices 
(vectors). The vector F has only one non-zero element, fhy,  for n = 2. The solution 
to (4.2) is given by 

x = T-lF, (4.3) 

where T-l is the inverse of T. The inverse of T contains the determinant, A, of T in 
the denominator; when the determinant vanishes, the solution (4.3) becomes un- 
stable. Thus, the lowest value of electric field (smallest positive y )  for which the 
determinant vanishes gives the onset of instability of the drop. Since the T matrix 
is tridiagonal, it is a simple matter to obtain a recursion relation for A. If the matrix 
is truncated to  contain N terms (T,,, = 0,  n or n' > 2 N ) ,  then its corresponding 
determinant, AZA,, satisfies the recursion formula 

with A, = I and AZN = 0 for negative N .  The determinant, A, of the original infinite 
matrix is obtained as the limit as N + c o  of AZs. The result in (4.4) can be used to 
obtain the smallest positive value of y, yZs, such that Azs(yZs) = 0. The asymptotic 
value of yZv as N + co, which we call yc, is the correct solution to the original problem 
of finding the lowest positive root of A = 0. These roots have been found for a wide 
range of dielectric constants; the results are given in table 2. 

The first two AZs and yZs are, from (4.4), 

(4.5) 



which are the simplest roots for which algebraic expressions can be obtained. The 
sign of the square root in (4.6) is chosen so that y4 is the smallest positive root in the 
range of dielectric constants 1 6 E 6 00. The result for y2 in (4.5) is not physical 
(yz < 0) for E < 52/37 and becomes infinite for E = 52/37 (Hz vanishes) and is, in 
general, not even a good estimate. This result is not surprising, since y2 totally ignores 
coupling between modes. The result for y4 given in (4.6) is, on the other hand, a good 
estimate even for small values of E and can be used as an approximate analytic ex- 
pression for yc. The values of yZLv have been calculated for a few values of N and an 
extended range of 8 and are given in table 2. As can be seen, the value of y4 differs 
from yc only by 16 yo for E = 1.1;  for water ( E  = 78.2), y4 differs from yc by 1.3 yo; for 
larger t: the difference is N 1 Yo. 

Upon comparing the results of table 2 with the results obtained by Brazier-Smith 
et al. (1971)) we find a discrepancy. The value of yc = 2.641 (E,(a/y)* = 1-625) given 
by them (along with references to previous work) corresponds to our value of 
yc = 3.044 for E = co. This discrepancy is caused possibly by the fact that they 
assumed that the drop is constrained to be an ellipsoid of revolution. For water, we 
obtain yc = 3.363. 

The amplitude of the x2 mode is easily obtained by using (4.1) along with the 
determinant in (4.4) to give for the 2Nth approximate solution 

x2(2N) = -, Qm 
A m  

(4.7) 

where the Qzs obey the same recursion relation as AZav given in (4.4), with the initial 
values 

and 
Q z  = 3hy/5, (4.8) 

Q4 = 3hYD4/5, (4.9) 

which are sufficient to generate all the QZN from (4.4).  The correct x2 that satisfies 
(4.1) is obtained as the limit as N + c o  of x2(2N). Having determined the value of xz, 
we can generate all the x, using (4.1) and the condition xo = 0. The variations of x2 
and x4 as functions of y are shown in figures 1 and 2 €or two values of the dielectric 
constant, E = 78.2 and E = 00. The amplitudes of the x, modes are approximately an 
order of magnitude larger than the x,+~ modes, for y 5 1. The amplitudes for all the 
modes diverge a t  yc. 

When the x, become large, the above results are invalid. A measure of the validity 
of the expansion procedure used in this work is the quantity 

(4.10) 

When ao/a becomes small, the entire procedure used here becomes questionable, 
because all the expansions used in the derivation of (3.20) assume that x, 4 1.  

Many workers (see 1 )  have calculated the drop distortion based on the assumption 
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Y -  

FIGURE 1 .  Amplitude of the second mode, x2, as a function of y (=E2a /y ) ,  
for 6 = 78.2 and c = a. 

V 

FIGURE 2. Amplitude of the fourth mode, z4, as a fiinction of!) ( = E % / y ) ,  
for f = 7 8 . 2  n l d  L = m. 
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1 .o r 

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 

FIGURE 3. The quantities a,/a, a,/a, and 1 -AB2/a3  obtained from the normal-mode analysis, 
versus field strength, y. 

that the drop distorts into an ellipsoid of revolution. To examine the validity of this 
assumption, we have calculated from (2.1) the values of the semimajor and semi- 
minor axes, A and B, of the distorted drop. If the drop were truly an ellipsoid, then 
A and B would satisfy the constraint 

AB2 = a3. (4.11) 

Therefore the quantity 1 - AB2/a3  gives a measure of the deviation of the drop from 
ellipsoidal shape. The quantities a2/a,  a,/a, and 1 - AB2/a3  are shown in figure 3 
for a drop with E = co. For small values of y ,  the latter quantity is quite small, showing 
that the drop can be well approximated by an ellipse. However, for y = 2.8, 
1 - AB2/a3  N 0.28, and a,/a is still close to 1 ( N 0.9), showing that our expansion 
procedure is still valid at this value of y .  It would seem that the ellipsoidal approxi- 
mation, when viewed in this light, is not very good and perhaps would indicate the 
source of the difference in the critical field values obtained here and by other workers. 

( b )  Dynamical equation for varying electric jields 

The dynamical equation (3.20) is, to our knowledge, a new result in the sense that the 
losses due to viscosity and the effect of a finite dielectric constant have been included 
in the analysis. Further, the entire equation of motion was derived in a consistent 
manner by using Rayleigh’s original method. For convenience, we can write (3.20) 
in the form 

Mnxn+M,rn2, +Mnu2,x, = thE2a8,,,+ 3hE2a,[G,, .2x,+2+Gn~n-2],  (4.12) 
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where M, = 4 n p a 3 / n ( 2 n +  1 )  (note that Ml is the total mass of the drop), I?, = 

2 7 ( n  - 1) (an + l ) /pa2,  w i  = w i ( 0 )  - ( 2 h E 2 a / M l ) n ( 2 n  + 1) H,, and where H, is given 
in ( 3 . 1 8 )  and w2,(0) is the frequency in the absence of an electric field and damping, as 
given by ( 2 . 1 0 ) .  If the electric field is assumed to  be of the form 

then 
E = E,  cos ( w t ) ,  

E2  = $Ei + frE; cos (2wt) .  

( 4 . 1 3 )  

( 4 . 1 4 )  

Thus, the driving force in ( 4 . 1 2 )  varies a t  twice the frequency of the electric field, and 
resonances for small amplitude should occur near 2w = w,. 

If we ignore the coupling to higher modes (G, = 0) in ( 4 . 1 2 )  and replace E2 by 
+Ei in w2,, we have 

3 h E i a  3 h E i a  
2 , + r z i 2 + ~ ; X 2  = loM, +- IOM, 'OS (2wt)'  (4.15) 

where we have used the results of ( 4 . 1 4 ) .  The result given in (4.15) is a standard linear 
equation, and the solution can be written as x z ( t )  = xi  + &(t ) ,  where 

3 h E i a  
k - 2 ( t )  = m, cos (2wt - O,), ( 4 . 1 6 )  

where R, = [ (wg- 4w2) ,+  4 w 2 r $  and tan 8, = 2 w r , / ( w ~  - 4 d ) .  Also, in the deri- 
vation of ( 4 . 1 6 ) ,  we have ignored terms of higher powers than Ei in the electric field. 

Thus, the results given in ( 4 . 1 6 )  show that, in small electric fields, the equation of 
motion of the drop in the iundamental mode is similar to that of an ordinary resonant 
circuit with damping; however, the driving force on the drop has a frequency twice 
that of the applied electric field. The higher modes are driven by the electric field 
indirectly by coupling through the lower modes, as shown by ( 4 . 1 2 ) ,  and approximate 
solutions can be obtained by a perturbative solution of the equations of motion. 

The dynamical equation ( 4 . 1 2 )  can be used in more complicated situations in which 
the electric field is of an impulse nature, such as that caused by the passage of charged 
drops. A number of sources of electrical and mechanical disturbances have been con- 
sidered by Brook & Lantham ( 1 9 6 8 )  in their study of modulation of radar echo from 
rainstorms. 

A second and perhaps more interesting case of varying fields is the case in which 
the electric field is an amplitude-modulated high-frequency wave. The carrier may 
be radar or an infrared laser, and the amplitude modulation can be chosen near a 
resonant frequency of the drop. Such a field may be represented by 

E = Eo( 1 + mo cos ( w t ) )  cos (w0 t ) ,  ( 4 . 1 7 )  

where wo 9 w ,  m, is the modulation index, and the spatial dependence of the wave has 
been ignored, because we assume that the drop radius is small compared to the 
wavelength of the carrier, A, = 2nc/w, .  We need the square of the field, which is 
given by 

Ez = $ E g [ l  + ~ m ~ + m , c o s ( c ~ ~ t ) + ~ m ~ c o s ( 2 ~ ~ t ) ~ ,  ( 4 . 1 8 )  
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where we have averaged over a time period long compared to a period of oscillation 
of the carrier. If the modulation index m, is small compared to unity, the terms 
involving mi can be ignored. Substituting (4.18) into (4.12), we obtain 

Xn + I?, i, + w;,x, = &hE;a[l + 2m, cos (wt) ]  an, 
+ #h@a[l+ 2m, cos (wt ) ]  [ G n + 2 ~ n + 2  + G , x ~ - ~ ] ,  (4.19) 

where, as in (4.15), we assume that the term E2 in OJ; is replaced by 3E;. Also implicit 
in the equation is the assumption that the dielectric constant, 6 ,  wherever it appears, 
is to be evaluated a t  the carrier frequency, w,. Only in cases of extreme dispersion 
is this assumption invalid, and such cases would have to be treated quite differently. 
The solution to (4.19) is the same as in (4.15) for n = 2, except that the driving 
frequency occurring in (4.15) should be reduced by a factor of two. 

The time-varying displacement of the drops can be studied (Wortman 1979) by 
amplitude modulation of a high power laser and observation of the reflected signal 
of a second low power laser. Some of the analysis given by Brook & Lantham (1968) 
would also apply to this case, except that the modulation of the reflected signal from 
the low-power laser would be a t  the frequency w of (4.13) rather than a distribution 
of different frequencies. By observing the reflected signal of the low power laser and 
sweeping through a range of values of w ,  one obtains information regarding the 
distribution of particles in a fog or cloud. 

5.  Concluding remarks 
We have used the methods of Rayleigh (1879) to derive a consistent theory of the 

oscillation of liquid drops, including viscosity and electric field effects. In  particular, 
in $ 2 we considered the equations of motion for free drops and showed that the results 
of Lamb (1932) for the decay of drops can be obtained from the Rayleigh formalism. 
In 5 3, the effects of a uniform external field were considered, and we derived equations 
of motion that coupled together the natural modes of oscillation of the drop. In  $4, 
we considered the application of the formalism to several problems of interest. For 
the case of a static applied field, we considered the condition for instability of the 
drops and showed that the result differed from that obtained previously by other 
workers. The difference was attributed to the fact that previous work considered the 
drops as constrained to ellipsoids of revolution, whereas our result was derived with 
no constraint other than constancy of the drop volume. For the case of an oscillatory 
applied field, we derived the solution for small amplitude of oscillation and showed 
that the actual force on the drop oscillated at  twice the frequency of the applied field. 
For the case of an amplitude-modulated wave, we showed that the solution was 
similar to that for an oscillating field and gave an application of the results to a 
technique for measuring particle size distributions in fogs or clouds. 

The authors thank Dr Nick Karayianis of Harry Diamond Laboratories for many 
valuable discussions and Dr Edward Stuebing of Chemical Systems Laboratories for 
his support throughout this work. 

Added note: One of the referees has called to our attention Steven B. Sample's 
Ph.D. thesis (University of Illinois, 1965, available from University Microfilms, 
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number 65-1 1,860) in which he addresses the problem of the oscillation of conducting 
liquid drops by methods similar to those described in the present work. Results for a 
conducting drop can be obtained from the present results in the limit E +  00; however, 
we have found that the results so obtained disagree with Sample's. The probable 
reason for this discrepancy is that Sample did not retain all terms to the same order 
in the drop distortion in a systematic way. 
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